FEATURES

- · Fully qualified to Class H or K
- · Radiation hardened
- -55° to +125°C operation
- 16 to 40 VDC input
- · Fully Isolated
- · Red hard optocoupler feedback
- Fixed frequency, 550 kHz typical
- Topology Single Ended Forward
- Transient protection 50 V/120 ms
- · Inhibit function
- · Sync function
- · Indefinite short circuit protection
- · Undervoltage lockout
- Up to 84% efficiency

DC/DC CONVERTERS 28 VOLT INPUT

SMHF SERIES SINGLE AND DUAL 15 WATT

MODELS										
VDC OUTPUT										
SINGLE DUAL										
3.3	±5									
5	±12									
12	±15									
15										

Size (max.): Non flanged 1.460 x 1.130 x 0.330 (37.08 x 28.70 x 8.38 mm)

Flanged 2.005 x 1.130 x 0.330 (50.93 x 28.70 x 8.38 mm)

See Figures 21 through 24 for dimensions.

Weight: 30 grams maximum.

Screening: Standard, Class H, or Class K (MIL-PRF-38534)

Radiation hardness levels O, L, and R

DESCRIPTION

The SMHF Series™ of 28 V DC/DC converters offers a wide input voltage range of 16 to 40 volts and up to 15 watts of output power. The units are capable of withstanding short term transients up to 50 volts. The package is a hermetically sealed, seam-welded metal case. Flanged and non-flanged models are available.

SCREENING AND REPORTS

SMHF converters offer three screening options (Standard, Class H, or Class K) and three levels of radiation hardness (O, L, and R). See Tables 1, 2, and 3 for more information. Detailed reports on product performance are also available and are listed in Table 4.

CONVERTER DESIGN

The SMHF converters are switching regulators that use a quasisquare wave, single-ended forward converter design with a constant switching frequency of 550 kHz. Isolation between input and output circuits is provided with a transformer in the forward path and a temperature compensated opto-coupler in the feedback control loop. The opto-coupler is radiation hardened and is especially selected for space applications.

For the SMHF dual output models, cross regulation is maintained by tightly coupled output magnetics. Up to 70% of the total output power is available from either output, providing the opposite output is simultaneously carrying 30% of the total output power. Predictable current limit is accomplished by directly monitoring the output load current and providing a constant current output above the overload point.

HIGHER POWER DENSITY

The SMHF Series offers a new standard of performance for small size and high power density. At just 0.33 inch high and a total footprint of 1.7 in², this low profile package offers a total power density of up to 30 watts per cubic inch.

LOW NOISE, HIGH AUDIO REJECTION

The SMHF converters' feed-forward compensation system provides excellent dynamic response and noise rejection. Audio rejection is typically 50 dB. Typical output voltage response for a 50% to 100%

step load transient is as low as 1.3% with a 150 msec recovery time. Input ripple current is typically 35 mA p-p with output ripple voltage typically 30 mV p-p .

INHIBIT FUNCTION

SMHF converters provide an inhibit terminal that can be used to disable internal switching, resulting in no output and very low quiescent input current. The converter is inhibited when a TTL compatible low (≤0.8 − output disabled) is applied to the inhibit pin. The unit is enabled when the pin, which is internally connected to a pull-up resistor, is left unconnected or is connected to an open-collector gate. The open circuit output voltage associated with the inhibit pin is 8.5 to 12 VDC. In the inhibit mode, a maximum of 12 mA must be sunk from the inhibit pin at 28 VDC input.

SYNCHRONIZATION

A synchronization feature is included with the SMHF Series that allows the user to match the switching frequency of the converter to the frequency of the system clock. An external synchronization feature is included that allows the user to adjust the nominally 550kHz operating frequency to any frequency within the range of 500 kHz to 600 kHz. This is initiated by applying a TTL compatible input of the desired frequency to pin 5.

SHORT CIRCUIT PROTECTION

SMHF Series converters provide short circuit protection by restricting the output current to approximately 115% of the full load output current. The output current is sensed in the secondary stage to provide highly predictable and accurate current limiting, and to eliminate foldback characteristics.

UNDERVOLTAGE LOCKOUT

Undervoltage lockout prevents the units from operating below approximately 14 VDC input voltage to keep system current levels smooth, especially during initialization or re-start operations.

DC/DC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

Input Voltage

• 16 to 40 VDC

Power Dissipation (Pd)

Output Power

• 12 to 15 watts depending on model

Lead Soldering Temperature (10 sec per lead)

Storage Temperature Range (Case)

• -65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range

- 16 to 40 VDC continuous
- 0 V for up to 50 msec transient

Case Operating Temperature (Tc)

- -55°C to +125°C full power
- -55°C to +135°C absolute

Derating Output Power/Current (Tc)

. Linearly from 100% at 125°C to 0% at 135°C

SYNC AND INHIBIT

- Sync In (500 to 600 kHz) Duty cycle 40% to 60%
 - · Logic low 0.8 V max
- Logic high 4.5 V min. 5 V max
- · Referenced to input common
- · If not used, connect to input common

Inhibit TTL Open Collector

- · Logic low (output disabled) Logic low voltage ≤0.8 V max Inhibit pin current 4.0 mA max
- · Referenced to input common
- · Logic high (output enabled)

Open collector or unconnected

TYPICAL CHARACTERISTICS

Output Voltage Temperature Coefficient

- 100 ppm /°C typical
- 150 ppm/°C maximum

Input to Output Capacitance

· 60 pF typical

Undervoltage Lockout

• 12 V input typical

Current Limit

. 115% of full load typical Isolation

• 100 megohm minimum at 500 V

Audio Rejection

50 dB typical

Conversion Frequency (255°C to +125°C Tc)

• Free run 550 kHz typical

480 kHz min, 620 kHz max

Inhibit Pin Voltage (unit enabled)

• 8.5 to 12 V

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, radiation level O, unless otherwise specified.

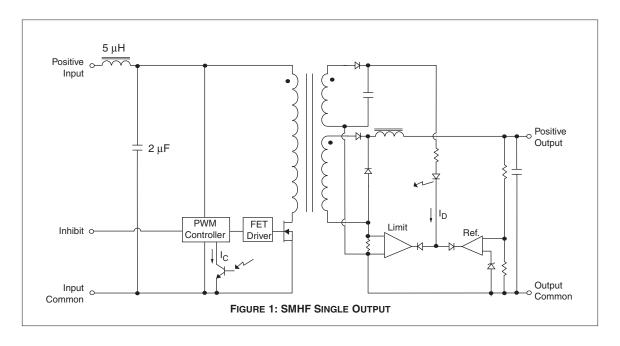
SINGLE OUTPUT MODELS		SMI	HF283	R3S	SN	1HF28	05S	SM	IHF28	12S	SN	1HF28	15S	
OUTPUT VOLTAGE	Tc = 25°C	3.27	3.3	3.33	4.95	5	5.05	11.88	12	12.12	14.85	15	15.15	VDC
OUTPUT CURRENT	V _{IN} = 16 TO 40 VDC	_	_	2.4	_	_	2.4	_	_	1.25	_	_	1.00	Α
OUTPUT POWER	V _{IN} = 16 TO 40 VDC	0	_	8	0	_	12	0	_	15	0	_	15	W
OUTPUT RIPPLE	10 kHz - 2 MHz	_	60	160	_	30	80	_	60	160	_	60	75	
VOLTAGE	Tc = -55°C TO +125°C	_	80	240	_	150	240	_	50	120	—	100	260	mV p-p
LINE REGULATION	V _{IN} = 16 TO 40 VDC	_	5	100	_	5	100	_	5	100	_	5	100	mV
LOAD REGULATION	NO LOAD TO FULL	_	20	50	_	20	50	_	20	50	_	20	50	mV
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 120 ms	0	_	50	0	_	50	0	_	50	0	_	50	V
INPUT CURRENT	NO LOAD	_	25	65	_	25	40	_	25	50	_	25	62	
	FULL LOAD	_	_	397	_	560	624	_	680	752	_	670	752	mA
	INHIBITED	_	5	12	_	5	12	_	5	12	_	5	12	
INPUT RIPPLE	10k Hz - 10 MHz	_	45	80	_	35	80	-	35	80	_	35	80	mA p-p
CURRENT	Tc = -55°C $TO +125$ °C	_	_	120	_	_	120	—	_	120		_	120	IIIA p-p
EFFICIENCY	Tc = 25°C	70	73	_	73	75	_	78	79	_	74	80	_	%
LOAD FAULT ¹	SHORT CIRCUIT													
	POWER DISSIPATION	_	5	8	_	3.5	8	_	3.5	8	_	3.5	7	W
	RECOVERY ²	_	7.5	30	_	7.5	30	_	7.5	30	_	7.5	30	ms
STEP LOAD	50 %-100%- 50%													
RESPONSE	TRANSIENT	-400	150	500	-500	150	500	-700	150	700	-800	200	800	mV pk
	RECOVERY ²	_	150	300	_	150	300	_	150	500	_	600	1200	μs
STEP LINE RESPONSE	16 TO 40 TO 16 V _{IN} TRANSIENT ³	-800	550	800	-800	550	800	-800	550	800	-800	550	800	mV pk
	RECOVERY ²	_	0.8	1.2	_	0.8	1.2	_	0.8	1.2	_	0.8	1.2	μs
START-UP	DELAY	_	10	25	_	10	25	_	10	25	_	10	25	μs
0 TO 28 VIN	OVERSHOOT ⁴	-	200	300	_	100	600	-	200	1200	_	200	1500	mV pk

- 1. Indefinite short circuit protection not guaranteed above 125°C (case)
- 2. Recovery time is measured from application of the transient to the point at which Vout is within regulation.
- 3. Input step transition time >10µs.
- 4. Input step transition time <100µs.

SMHF SERIES SINGLE AND DUAL 15 WATT

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, radiation level O, unless otherwise specified.

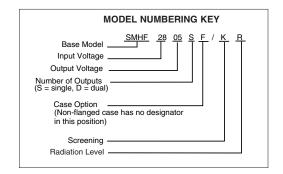
DUAL OUTPUT MODE	SMHF2805D			SMHF2812D			SMHF2815D				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
	-V _{OUT}	4.92	5.00	5.08	11.82	12.00	1218	14.78	15.00	15.23	100
OUTPUT CURRENT ¹	V _{IN} = 16 to 40 VDC	_	±1.2	1.68	_	±0.625	0.875	_	±0.500	0.700	А
OUTPUT POWER ¹	V _{IN} = 16 to 40 VDC	_	_	12	_	_	15	_	_	15	W
OUTPUT RIPPLE	10 kHz - 2 MHz	_	60	160	_	70	175	_	70	175	mV p-p
VOLTAGE ±V _{OUT}	Tc = -55°C to +125°C	_	100	240	-	100	275	_	100	275] ""V p-p
LINE REGULATION	BALANCED +V _{OUT}	_	5	50	_	5	50	_	5	50	mV
Vin = 16 to 40 VDC	LOAD -V _{OUT}	_	_	100	_	_	100	_	_	100] ""
LOAD REGULATION	BALANCED +V _{OUT}	_	20	50	_	20	50	_	20	50	mV
	LOAD -V _{OUT}	_	_	150	_	_	150	_	_	150] ""
CROSS REGULATION ²		_	6	7.5	_	3	6	_	3	6	%
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 50 msec	_	_	50	_	_	50	_	_	50	V
INPUT CURRENT	NO LOAD	_	20	50	_	25	50	_	25	50	
	FULL LOAD	_	540	600	_	645	754	_	638	754	mA
	INHIBITED	_	6	12	_	5	12	_	5	12	
INPUT RIPPLE	10 kHz - 10 MHz	_	30	80	_	40	80	_	40	80	mA p-p
CURRENT	$Tc = -55^{\circ}C \text{ to } +125^{\circ}C$	_	60	120	_	55	120	_	55	120	Питрр
EFFICIENCY		75	77	_	74	81	_	74	82	_	%
LOAD FAULT	SHORT CIRCUIT ³										
	POWER DISSIPATION	_	3	8	-	3	6	_	3	6	W
	RECOVERY ⁴	_	7.5	30	_	7.5	50	_	7.5	50	ms
STEP LOAD RESP.5	50% - 100% - 50%										
BALANCED LOADS	TRANSIENT +VOUT	-600	200	600	-600	300	600	-600	300	600	mV pk
	-V _{OUT}	-600	150	600	-600	100	500	-600	100	600] p
	RECOVERY ⁴	_	150	500	_	200	500	_	200	600	μs
STEP LINE RESP.	16 - 40 - 40 VDC										
± V _{OUT}	TRANSIENT ⁶	-800	600	800	-750	550	750	-750	550	750	mV pk
	RECOVERY ⁴	_	0.8	1.2	_	0.8	1.2	_	0.8	1.2	ms
START-UP	DELAY	_	12	30	_	12	25	_	12	25	ms
	OVERSHOOT ⁷	0	100	500	0	200	500	0	200	500	mV pk


Notes

- 1. Up to 70% of the total output power is available from either output providing the opposite output is simultaneously carrying 30% of the total output power. Each output must carry a minimum of 30% of the total output power in order to maintain regulation on the negative outputs.
- 2. Effect on –Vout for the following conditions, percentages are of total power: +Po=50% to 10% and -Po=50%
 - +Po = 50% and -Po = 50% to 10%

- 3. Indefinite short circuit protection not guaranteed above 125°C (case)
- Recovery time is measured from application of the transient to point at which Vout is within regulation.
- Response of either output with the opposite output held at half of the total output power.
- 6. Input step transition time >10µs.
- 7. Input step transition time <100µs.

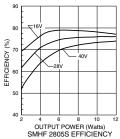
BLOCK DIAGRAM



SMHF SERIES SINGLE AND DUAL 15 WATT

	PIN OUT	-						
Pin	Single Output	Dual Output						
1	Inhibit	Inhibit						
2	No connection	Positive Output						
3	Output Common	Output Common						
4	Positive Output	Negative Output						
5 ¹	Sync	Sync						
6	Case Ground	Case Ground						
7	Input Common	Input Common						
8	Positive Input	Positive Input						
		D DUAL						
	8 7 © •	6						
Dotted line outlines flanged package option. See Figures 21 through 24 for dimensions.								
FIGURE 2: PIN OUT								

SMD NUMBERS								
STANDARD MICROCIRCUIT	SMHF							
DRAWING (SMD)	SIMILAR PART							
5962-9213902HXC	SMHF2805S/HO							
IN PROCESS	SMHF2812S/HO							
5962-9160102HXC	SMHF2815S/HO							
5962-9555902HXC	SMHF2805D/HO							
5962-9214402HXC	SMHF2812D/HO							
5962-9161402HXC	SMHF2815D/HP							


To indicate the flanged case option change the "X" to "Z" In the SMD number. The SMD number shown is for Class H screening, non-flanged, and no Radiation Hardness Assurance (RHA) level. See the SMD for the numbers for other screening and radiation levels. For exact specifications for an SMD product, refer to the SMD drawing. Call your Interpoint representative for status on the SMHF SMD releases which are "in process." SMDs can be downloaded from http://www.dscc.dla.mil/programs/smcr

DC/DC CONVERTERS

Typical Performance Curves: 25°C Tc , 28 VDC Vin, 100% load, free run, unless otherwise specified.

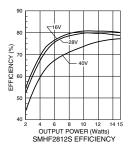


FIGURE 4

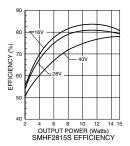


FIGURE 5

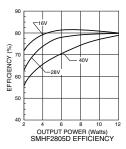


FIGURE 6

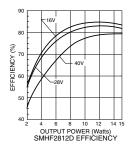


FIGURE 7

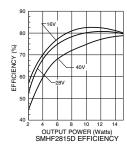


FIGURE 8

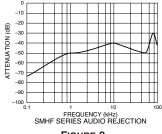


FIGURE 9

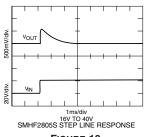


FIGURE 10

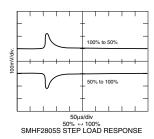


FIGURE 11

SMHF SERIES SINGLE AND DUAL 15 WATT

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

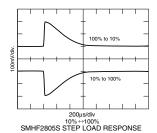


FIGURE 12

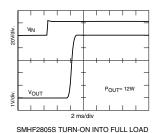


FIGURE 13

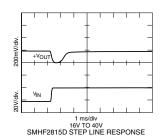


FIGURE 14

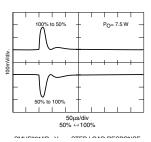


FIGURE 15

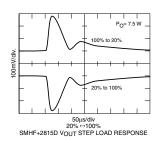


FIGURE 16

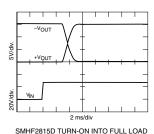


FIGURE 17

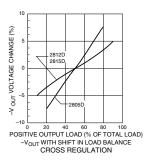


FIGURE 18

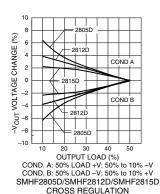


FIGURE 19

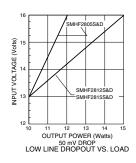
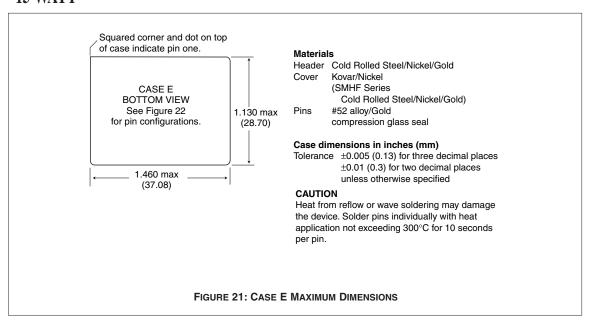
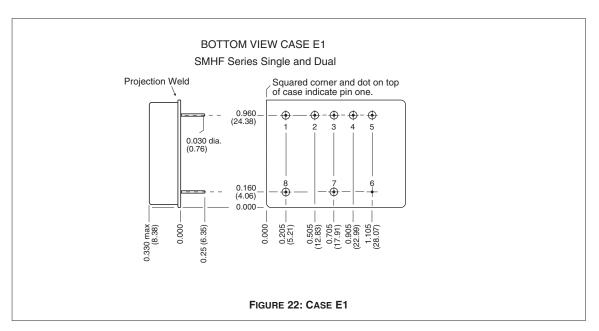
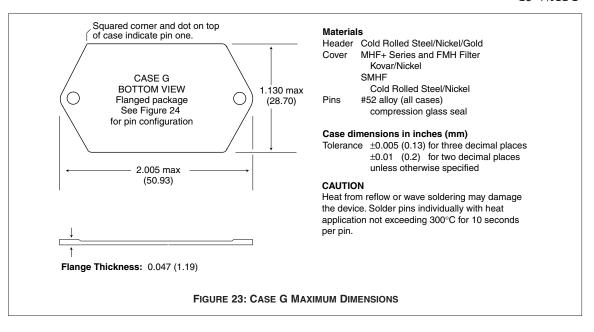
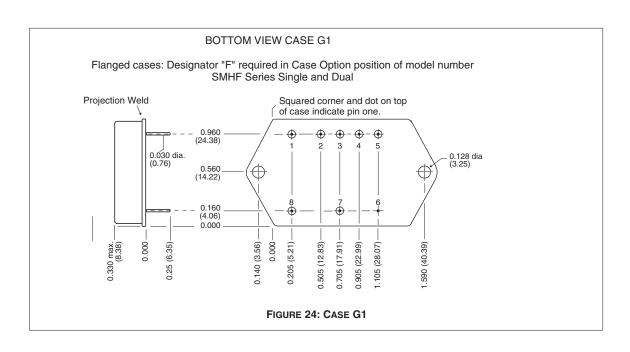




FIGURE 20

DC/DC CONVERTERS





Note: Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy.

SMHF SERIES SINGLE AND DUAL 15 WATT

DC/DC CONVERTERS

TABLE 1: ELEMENT EVALUATION

ELEMENT EVALUATION	SPACE					
	PROT	PROTOTYPE		CLASS		ASS
TEST PERFORMED	(0))	H	1	K	
(COMPONENT LEVEL)	M/S	Р	M/S	Р	M/S	Р
Element Electrical	yes	no	yes	yes	yes	yes
Element Visual	no	no	yes	yes	yes	yes
Internal Visual	no	no	yes	no	yes	no
Temperature Cycling	no	no	no	no	yes	yes
Constant Acceleration	no	no	no	no	yes	yes
Interim Electrical	no	no	no	no	yes	no
Burn-in	no	no	no	no	yes	no
Post Burn-in Electrical	no	no	no	no	yes	no
Steady State Life	no	no	no	no	yes	no
Voltage Conditioning /Aging	no	no	no	no	no	yes
Visual Inspection	no	no	no	no	no	yes
Final Electrical	no	no	yes	yes	yes	yes
Wire Bond Evaluation	no	no	yes	yes	yes	yes
SEM	no	no	no	no	yes	no
SLAM TM /C-SAM: Input capacitors only (Add'I test, not req. by H or K)	no	no	no	yes	no	yes

Notes

M/S Active components (Microcircuit and Semiconductor Die)

P Passive components

Definitions

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534

SEM: Scanning Electron Microscopy

SLAM™: Scanning Laser Acoustic Microscopy C-SAM: C - Mode Scanning Acoustic Microscopy

TABLE 2: PRODUCT ENVIRONMENTAL SCREENING

ENVIRONMENTAL SCREENING TEST PERFORMED	SPACE PROTOTYPE	CLASS	CLASS
(END ITEM LEVEL)	(O)	Н	K
Non-destruct bond pull			
Method 2023	no	no	yes
Pre-cap inspection			
Method 2017, 2032	yes	yes	yes
Temperature cycle			
Method 1010, Cond. C	yes	yes	yes
Constant acceleration			
Method 2001, 3000 g	yes	yes	yes
PIND Test			
Method 2020, Cond. B	no	yes	yes
Radiography			
Method 2012	no	no	yes
Pre burn-in test	yes	yes	yes
Burn-in, Method 1015, 125°C			
96 hours	yes	no	no
160 hours	no	yes	no
2 x 160 hour (includes mid BI test)	no	no	yes
Final electrical test			
MIL-PRF-38534, Group A	yes	yes	yes
Hermeticity test			
Fine Leak,			
Method 1014, Cond. A	yes	yes	yes
Gross Leak,			
Method 1014, Cond. C	yes	yes	yes
Final visual inspection			
Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

DC/DC CONVERTERS

TABLE 3: RADIATION HARDNESS LEVELS

PRODUCT LEVEL AVAILABILITY	ENVIRONMENTA	L SCREENIN	NG LEVELS
	SPACE		
	PROTOTYPE	CLASS	CLASS
RADIATION HARDNESS LEVELS	(O)	Н	K
O: Standard, no radiation guarantee			
For system evaluation, electrically	00	НО	Not
and mechanically comparable to		110	available
H and K level.			
R: Radiation hardened – Tested lots	Not		
Up to 100 k Rads (Si) total dose	available	HR	KR
SEU guarantee up to 40 MeV	available		

R is referenced to MIL-PRF-38534, appendix G, Radiation Hardness Assurance (RHA) levels.

TABLE 4: REPORTS INCLUDED WITH PURCHASE OF PRODUCT HR or KR

- 1. Radiation Susceptibility Analysis
- 2. Electrical/Thermal Stress Analysis and Derating Report
- 3. MTBF Report
- 4. FMEA Report

HO option: Reports 2, 3, and 4 are included with purchase. **OO** option: Select reports available as separate purchases.

Contact Information: www.interpoint.com

Interpoint Headquarters USA Interpoint UK

Email: power@intp.com

(

Interpoint France